Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 2 de 2
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Antiviral Res ; 212: 105570, 2023 04.
Статья в английский | MEDLINE | ID: covidwho-2288776

Реферат

Coronaviruses, as enveloped positive-strand RNA viruses, manipulate host lipid compositions to enable robust viral replication. Temporal modulation of the host lipid metabolism is a potential novel strategy against coronaviruses. Here, the dihydroxyflavone pinostrobin (PSB) was identified through bioassay that inhibited the increment of human coronavirus OC43 (HCoV-OC43) in human ileocecal colorectal adenocarcinoma cells. Lipid metabolomic studies showed that PSB interfered with linoleic acid and arachidonic acid metabolism pathways. PSB significantly decreased the level of 12, 13- epoxyoctadecenoic (12, 13-EpOME) and increased the level of prostaglandin E2. Interestingly, exogenous supplement of 12, 13-EpOME in HCoV-OC43-infected cells significantly stimulated HCoV-OC43 virus replication. Transcriptomic analyses showed that PSB is a negative modulator of aryl hydrocarbon receptor (AHR)/cytochrome P450 (CYP) 1A1signaling pathway and its antiviral effects can be counteracted by supplement of FICZ, a well-known AHR agonist. Integrative analyses of metabolomic and transcriptomic indicated that PSB could affect linoleic acid and arachidonic acid metabolism axis through AHR/CYP1A1 pathway. These results highlight the importance of the AHR/CYP1A1 pathway and lipid metabolism in the anti-coronavirus activity of the bioflavonoid PSB.


Тема - темы
Coronavirus Infections , Coronavirus OC43, Human , Coronavirus , Propolis , Humans , Lipid Metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/pharmacology , Propolis/metabolism , Propolis/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Linoleic Acid/pharmacology , Linoleic Acid/metabolism , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Cell Line
2.
J Ethnopharmacol ; 297: 115528, 2022 Oct 28.
Статья в английский | MEDLINE | ID: covidwho-1926631

Реферат

ETHNOPHARMACOLOGICAL RELEVANCE: The leaves of Eurya chinensis(Chinese Dagang Tea)have been consumed as herbal tea for centuries in Guangdong, China, and have also been used to prevent influenza and treat colds and fevers in traditional Chinese medicine. However, there are no reports on the chemical profile and efficacy of its leaves for the treatment of fever and viral infections. MATERIALS AND METHODS: The chemical constituents of Eurya chinensis leaves were isolated and identified by phytochemical study and spectroscopic data, E. chinensis extracts and compounds were evaluated for their antiviral activities by cytopathic effect (CPE) reduction and antibody-based EC50 assay. The antiviral effect of the main component was confirmed by immunofluorescence and transmission electron microscopy. Virtual screening and docking enzyme inhibition experiments were performed to analyze the anti-coronavirus mechanisms of the compounds from E. chinensis leaves. RESULTS: In this study, we found for the first time that E. chinensis leaf extract exhibited inhibitory effects against coronaviruses HCoV-OC43 in vitro. Among 23 monomer compounds isolated from E. chinensis leaf extract, the triterpenoids (betulinic acid, α-amyrin) and the flavonoids (naringenin, eriodictyol and quercetin) showed marked antiviral activity. Microscopic optical analyses further demonstrated that betulinic acid can remove virus particles from HCoV-OC43 infected cells. Virtual screening and docking analysis towards the coronavirus in vogue revealed that betulinic acid was able to bind well to PLpro and Nsp14N7-MTase, and that the flavonoids prefer to bind with PLpro, Nsp3MES, NspP14N7-MTase, Nsp16GTA, and Nsp16SAM. The enzyme inhibition experiments demonstrated that betulinic acid (1) exhibited significant inhibition of PLpro and N7-MTase activity of SARS-CoV-2. CONCLUSION: This study proposes E. chinensis and its triterpenoids and flavonoids as promising potential treatments for coronaviruses.


Тема - темы
COVID-19 , Camellia sinensis , Triterpenes , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Flavonoids , Plant Extracts/pharmacology , SARS-CoV-2 , Tea , Triterpenes/pharmacology
Критерии поиска